k
clusters, using the k-means clustering algorithm.Array.from()
and Array.prototype.slice()
to initialize appropriate variables for the cluster centroids
, distances
and classes
.while
loop to repeat the assignment and update steps as long as there are changes in the previous iteration, as indicated by itr
.Math.hypot()
, Object.keys()
and Array.prototype.map()
.Array.prototype.indexOf()
and Math.min()
to find the closest centroid.Array.from()
and Array.prototype.reduce()
, as well as parseFloat()
and Number.prototype.toFixed()
to calculate the new centroids.const kMeans = (data, k = 1) => { const centroids = data.slice(0, k); const distances = Array.from({ length: data.length }, () => Array.from({ length: k }, () => 0) ); const classes = Array.from({ length: data.length }, () => -1); let itr = true; while (itr) { itr = false; for (let d in data) { for (let c = 0; c < k; c++) { distances[d][c] = Math.hypot( ...Object.keys(data[0]).map(key => data[d][key] - centroids[c][key]) ); } const m = distances[d].indexOf(Math.min(...distances[d])); if (classes[d] !== m) itr = true; classes[d] = m; } for (let c = 0; c < k; c++) { centroids[c] = Array.from({ length: data[0].length }, () => 0); const size = data.reduce((acc, _, d) => { if (classes[d] === c) { acc++; for (let i in data[0]) centroids[c][i] += data[d][i]; } return acc; }, 0); for (let i in data[0]) { centroids[c][i] = parseFloat(Number(centroids[c][i] / size).toFixed(2)); } } } return classes; };
kMeans([[0, 0], [0, 1], [1, 3], [2, 0]], 2); // [0, 1, 1, 0]
Subscribe to get resources directly to your inbox. You won't receive any spam! ✌️