Array.prototype.map()
to map the data
to objects. Each object contains the euclidean distance of the element from point
, calculated using Math.hypot()
, Object.keys()
and its label
.Array.prototype.sort()
and Array.prototype.slice()
to get the k
nearest neighbors of point
.Array.prototype.reduce()
in combination with Object.keys()
and Array.prototype.indexOf()
to find the most frequent label
among them.const kNearestNeighbors = (data, labels, point, k = 3) => { const kNearest = data .map((el, i) => ({ dist: Math.hypot(...Object.keys(el).map(key => point[key] - el[key])), label: labels[i] })) .sort((a, b) => a.dist - b.dist) .slice(0, k); return kNearest.reduce( (acc, { label }, i) => { acc.classCounts[label] = Object.keys(acc.classCounts).indexOf(label) !== -1 ? acc.classCounts[label] + 1 : 1; if (acc.classCounts[label] > acc.topClassCount) { acc.topClassCount = acc.classCounts[label]; acc.topClass = label; } return acc; }, { classCounts: {}, topClass: kNearest[0].label, topClassCount: 0 } ).topClass; };
const data = [[0, 0], [0, 1], [1, 3], [2, 0]]; const labels = [0, 1, 1, 0]; kNearestNeighbors(data, labels, [1, 2], 2); // 1 kNearestNeighbors(data, labels, [1, 0], 2); // 0
Subscribe to get resources directly to your inbox. You won't receive any spam! ✌️